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BALLISTIC RESEARCH LAB,ORATORIES 

REPORT NO. 974 

C~why/mJf 
Aberdeen Proving Ground, Md. 
February 1956 

THE MEASUREMENT OF NON-LINEAR FORCES AND MOMENTS 
BY MEANS OF FREE FLIGHT TESTS 

ABSTRACT 

It has been observed, that the behavior of missiles either 

movln,g under ,the influence of non-linear forces and moments or flying 
at large angles of yaw Is frequently well described by curves of the 
same form as those generated by linear,force systems and small angles 
of yaw., With this in mind an "equivalent" linear solution to the 
actual equations of yawing motion is obtained. 

This equivalent linear solution has been used in the analysis 
of a wide variety of programs fired on BRL's Spark Rangsand considerable 
success has been experienced. Excellent internal consistency has 

been observed in measuring non-linear normal and Magnus forces and 
their moments and, in all cases where wind tunnel results were available, 
they were in good agreement with range results, 

The application of this technique to the equally important problem 
of predicting yawing motion is described. 
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TABLE OF SYMBOLS* 

axial moment of inertia 

2 
K1O' + K20 

2 

coefficients in the drag equation (Equation (22)) 

transverse moment of inertia 

Klo K20 

diameter 

unit vectors along axes of fixed-plane co-ordinates 

(F ; F F ) aerodynamic force vector 1, 2' 3 
drag force 

lift force 

acceleration due to gravity 

AJL'- JD + k2 -2 (JH - RJ& 

P 0 

ss 
S2 dr dq 

0 0 

pd3' 
T iKj 

Kig2k s2k j i = A, D, DA, F, H, L, M, MA, N, NA, S, T 
k=O 

(Expansion as a function of S2 of aerodynamic coefficients 
defined in Equations (5 - 10)) 

* 
Only those symbols which appear in the body of this report are 
listed here. Symbols which are introduced in the appendices appear 
close to their definitions. 
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- UiP 
KiOe ; i = 1, 2 amplitude of i-th frequency 

i = 1,2 mid-range amplitude of I.-th frequency (p = 

axial spin deceleration coefficients / 

drag coefficient 

axial drag coefficient 

Magnus force coefficient 

moment coefficient due to cross angular velocity 

lift force coefficient due to yaw 

0) ., 

overturning (or righting) moment coefficient due to yaw 

moment coefficient due to cross acceleration 

normal force coefficient due to yaw 

normal force coefficient due to cross acceleration 

normal force coefficient due to cros6 angUhr Velocity 

Magnus moment coefficient 

A 

F md* 
axial radi?Js of gyration in calibers 

r- 
T transverse radius of gyration in calibers 
ma 

u1 cosine of total yaw angle 
ii M G-a 
Jk2 - 'JM = 

>: 
p = 

>1 

x 
j"2k M 2k ' 

2k 

k=O k=C 



3 = (Ml, & M3) aerodynamic moment vector 

m IWBB 

(np directi on cosines of mlssileqs axis with respect to 
range co-ordinates 
t 

P = i d;t arclength along the trajectory in calibers 
0 

T = 

t 

it = 

U = 

consta?hs in the swerve equations (Equations (82 -83)) 

change,in center of mass location measured in calibers (Eqs., 

(99 -100)) 
w 

R(Jh - k -* Jr) = 
1 

time 

(up up 3 u ) velocity vector 

I I 3 magnitude of the velocity 

magnitude of the velocity at mid-range 

vectorIin the range co-ordinate, system 

vector,in the fixed-plane co-ordinate system 

exponential damping coefficient of i-frequency 

magnitude of the sine of the total vaw angle 

- ” p 

-OK 2+ 50 2@ 1 
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Kpo2f12, 
! 20 
I PIl' - $2" 
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2K20 
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2 
2K10 
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Effective squared 
yaw6 
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maximum value of 8 

orientation angle of plane of yaw 

h2 f ix 
up+ iu 3 

3 = .u complex yaw 

CL2 t1l.L 
cm2 + iru3)d 

3 = dimensionless complex cross angular 
U 

velocity 
*ld 
-ii dimensionless missile spin 

A 
-V B 

Rid 
u 

dimensionless co-ordinate system spin 

average value of I: 

air density 

6 10 + @I' p phase angle of i-frequency 

d,! = - @.g 

fi 10 - 8 = 8 - g*o 

arccos n 3 

o-$’ $’ Q3) angular velocity vector of co-ordinate system 

by, up 3 w ) angular velocity vector of missile 

$( > 

$( > 

circumflex superscript with the exception of $'denotes 
quantities in the fixed-plane co-ordinate system 

tilde superscript with the exception of E2 denotes quantities 

appearing in the solution of the linearized yaw equation 

asterisk denotes the modif1catl.or.l of quantities involving 
aerodynamic coefficients through the consideration of the 

cosine of the yaw angle, 4. 





1. INTRODUCTION I 

The free flight spark range technique measures the aerodynamic 
I force6 and moments acting on a missile by means of very accurate 

observations of its motion in flight, This process requires a 
, knowledge of the functional dependence of these forces and moments 

on the dynamic variables of the motion in order that the solution 
curves to the differential equations of motion may be obtained. 
These solution curves are fitted to the motion and the forces 
and momenta calculated from ,the parameters of the fit., 

This need for solutlorsin closed form has traditionally 
limited range tests to motions which are described by linear equations. 
E+ce non-linear terms arise from both the size of the motion (non- ' 
linear geometry terms) and the presence of second order or higher 
terms In the aerodynamic force Spansion (non-linesz force terms),’ 
this mbans that the range technique~ls restricted to configurations" 

;poaseseing linear force systems and flying at amall angles of yaw. 

Strangely enough, a number of modela have been’fired In the BRL 
Ranges whlch,elther possessed known non-llnearlties in their force 

systems or flew at large anglee of yaw and it was found that their ‘, 

motion could be very well fltted by functions which were solutions 

! 

3. of the linearized e'quationsd This seemed to imply that the parameters 

of these linear equations' should be "average values" of the 
coefficients of the parent non-linear equation., It is the purpose 

of this report first to derive the equations which relate these 
average values to the non-linear force terms and certain characteristics 

,of the motion and then to demonstrate the great value of these 
relations by applying them to a number of programs which have been 
fired at ERL. The success of this technique more than doubles the 

values of free flight ranges for both the ballistician and the 
aerodynamicist. 

Finally the extension of this method to‘the even more. important 
problem of the prediction of yawing motion is described. 



2. DYNAMC COXSIDF3ATIONS 

In order to investigate the yaw;l,ng motion of missiles moving at 

large angles of yaw, the exact equu-tions of motion must be derived. 

An important feature of: th$s derivation lies in the proper selection 
of the co-ordinate system and the dynamic variables, This selection 

should be made so that ~the resulting equations are as simple as 
possible and reasonably compatible with the basic assumption that their 
solution may be approxi,mated by a solution of ,t,he linearized equations, 
In other words the non-linear equation must possess the same general 
characteristics of the linearized equation, i-c,, order of equations, 

'number of variables, symmetry of variables, etc, 

Fox arbitrary rigi,d bodies the best co,ordinn.te system is one 

whose axes lie along the body's principal axes of inertia, S:Lnce 't3-ie 

mass distributions of most m3ssiles arc rotationally symmetrical about 

the longitudinal axis df inqrtia, all transverse moments of inertia 
axe assumel to be equal and all axes perpendicular to the longitudfnal 
axls .ure principal ~tes of inertl~~. A right-handed Cartesian co-ordinate 
system with numbered s&es wj..ll be constrained so that its l-ax‘is is 

aligned with the missile's longitudinal axis and pointing forward, 
0 
fl> the angular velocity vector of the co-ordinate system 

relative to an inertial system, will have components (D 
1' fig, QsS 

while the mlssilels angular velocity vector, 8, vi12 have components 

(y, up '03)' This definition of the co-ordinate system, then, raquLr@n ~ 
that a2 = ~2 and Q2, =, d . 

i, 3 
If 0.1 and an initial orientation of the 2- 

axis are specified,, the c,o-ordinate system would be comp;letely determined. 
In Appendix A the equa$Lons 0%' motion are derived for arbitrary values 
of i-l 1 Land we see that these equations would be greatly simplified if 

5 = 0. For this reas?n we will make considerable use of a non-spinning 
co-ordinate system for iwhich the Z-axis In3.tial.Ly lies In the horizontal 
plane pointing to the qeft and whose axial spi,n, Rl, is Identically zeroc 

I 
Turning now to the question of dependent variables it may be s&en 

that the major contenders are the Eulerian angles and the directJon %I 
cosines. The question of compatdbi.lity non appears> ALl;hou& the 
linearized equations 1$ terms of Eulerian angles are symmetric in the 



components of yaw, the corresponding exact equations cannot be. ,, 
This is clearfrom the definition of the angles. For this reason* 
we will express our equations in terms of direction cosines, 

At this point we mu&precisely define our variables, The yaw 
angle is defined to be the angle between the missile's axis and the 
tangent to its trajectory. + ' If the missile's velocity vector, u, 

has components (u,, u2, u3) and magnituae, u, the sine of the yaw 

I , 
and a unit vector lying in the plane of yaw has 

direction cosines (0, 4*. ' & )., =ney we will 

&nsider only those missiles possessing trigonal or greater rotational 
'symmetry, it will be convenient to represent quantities in the plane 
normal to the missile.'s axis by complex numbers. With this in mind 

we define the complex yaw vector, A, to be a vector whic3 lies in, the 

plane of yaw and whose magnitude is the sine-E*of the yaw angle. 

. A= 
u2 + iu 3 

.  l 

u 
(1) 

The cosine of the yaw angle will be needed in this report and will be I 
denoted by a. 

. “1 . . J=F (2) 

* 
As can be seen from an examination of Reference 1 the Eulerian 
angles also introduce considerable algebraic complexity. 

In Reference 2, ul is used as a characteristic velocity for forming 
dimensionless quantities and, hence, the complex yaw of that re- 
ference is proportional to the tangent of the yaw angle. Although 
this uBe of,ul does simplify the center of ma6~ relations, it alsc 

introduces a number of complications which our choice of u avoids. , 

li 



In a ,similar fashion the axial and trtisverse components of the an&lap 
velqcity may be, separa$ed‘and written in'complex form. 

\' 

uld, 
p ;= - 

u 

, 

where' d ie diameter, 

Finally we will select 'OW iliaegendekt variable to be distance measured 
.,' 
aloq,the trajectory in calibera, Tf, this'karlable is identlfieq by p, 

The generalised3'llnear ‘expsqsion of the aerodynamic force.',and 
,momant assumes that the force! and moment are linear 'fur&Ions of X, p, 
and their derivative&in B non-rolling c&&dinate system. / For s&metric: 

'misailes'kis assu&tipn ikroduces eighteen' coefficients,' ' If we limit 

wreslves ta only those coefficients having a measurable effect on the 
mot$on, 'this total r$ce,s td ten,& we havk.t& followlrig exganaion. 

/ 
'where (F 1' F2J ” F ~) are comp,otientB af'& aerodynamic force, 

N-p+ .y me components of *he aerodynamic moment, 

p ie air density, 
y i 

c = - ., and 
U iI 

Ki are dime?sionlese &erodyna@c coefficien;ta, 

l!=dX ~ 
dp' , 

I i2 



. 

.‘, 

For this report we will only consider non-linearities caused 

by the size of the yaw angle. Since symmetry4 requires that the 

aerodynamic coefficients must be functions of XT = E2, we will drily 

consider such a dependency on the square of the sine of the yaw,angle. 

Two other force coefficients will be used in this report. These ,' 
are based on a resolution oftthe aerodynamic force in the plane of yaw 
into components along the trajectory and perpendicular ,to it, If F'D 

is the component along the traj.ectory and FL the component perpendicular 

to the trajectory and pointing toward the missiless nose, 

FD = - ,d2u2 KD (9) 

FL = - pd2u2 KL S GO) 

where 6 = Ii- Xx (6 is. the magnitude of the sine of the yaw angle.) 

In order to obtain relations between these two new coefficient,s 
and those defined In Equations (5 - 6), we require' that the 2-axis 

be in the plane of yaw so that X is real and equal to -6. 

6 Fl + J,F, (32) 

Substituting Equations (5), (6), (g), and (10) in Equations (11) (12) 
and neglecting the l$ and sA terms. .' 



(14) 

From Equations (13) (14) th e usual small yaw approximations 

follow: 

% DA AK (15) 

(16) 

Finally if KDA is eliminated from Equations (13-14) the following useful 
' relation results: 

RKL = 5 - KD 07) 

In Appendix A,, the exact equations of motion for the aerodynamic ' 
force and moment as defined by Equations (5 - 8) are derived. (Eqs, 
,(A3, AlO, Alg)l If the effect of gravity and the variation of spin are 
neglected (5 = rf = D = 0) they may be written in the following form 
in the non-sginning co-ordinate system ((> = 0) 

‘-where 

'H= is,- Jp+ 

4 Lgv 

M = Ali2-2 JM 

T = e(JL - kl-* JT) 

A is axial moment of Lnertia 

x2 -2(JH - 4 J& 

B is transverse moment of inertia ) 
kL is axial radius of gyration in calibers 

k2.is transverse radi(m of gyration in calibers 
I 

I 

I 14 



Ji = $ Ki 

m is mass, 

3. SMALL YAWIXG MOTION WTTH NON-LINEAR MOMEZU AND NO 
DAMPiNG 

In this section a very simple example of non-linear yawing motion 
will be considered in some detail. This is the case of a missile' 

flying at small yaw and acted on by a cubic over.turning or restoring 

moment. Later the effect of other non-linear forces and moments-as 

well as the geometric non-llnearities will be considered, 

The basic feature of all the theoretical resuits of this report 
is the assumption that over 'small" sections of a minsile~s trajectory 
the non-linearities present in the equations of motion do not cause 
the motion to be qualitatively different from motion based on the 
linearized equations, For example, the yawing motion of a symmetric 
missile acted on by non-linear forces and moments should still be 

epicyclic when a 'small" portion of the trajectory is considered, The 

parameters of the epicycle, however,, would probably be related to the 

size of the motion. Th$s aaeumption seems to be reasonable ,when the 
non-linearities are themselves "smal1l'. The experience of 
ballisticians as based on actual free flight tests have indicated that 
relatlveiy long sections of trajectories and large non-linear-i-ties are 
~tiil Usma enough for this assumption. 

In order to illustrate t'=1is point the da-ta analysis of a non- 
linear drag force will ?3e ontlined, Since this is the only non-linear 
aerodynamic fore? which up to the present time has been successfully 

handled by ballisticians, this digression wiil also provide a good 
background for later derivations, 

The non-linear dependence of the ti&g force on the magnitude of 

the yaw is very well described by the assumption that the drag coefficient 

is a quadratic function of 6 where 6'is the sine of the total yaw angle. 
Y Y . Kp = KD I- KD 2 ,' (21) 

0 6 



In Reference 5 it! is shown that the usual drag reduction for flat 

trajectories* involves the fitting of the time measurements to a 

cubic in distance. 

t =a o~alP+&2p 
2 

+a P 3 
3 

I 

where p is measured from the middle of the observed trajectory. 
It is further shokn there that under certain reasonable approximations 
the following equation applies for drag force of the same form as 

Equation (21). 1 

t 

where b is velocity at adrange (p = O)$ 

&3 is a constant related to drag dependence on Mach number, 

11 (P) = 
ss 

B2 dr dq, and 
0‘ 0 

6+#1 
JDi JI * 

If the yaw is ,well described by an epicycle, then 

--ap 
where K 

3 
= K 

Joe j ; 8, = dj, + $'Pt and 

KJoJ 9’ @j,;’ 4b are real constants. 

Altnough the expression in parentheses may be given more simply by 
2 COS(fdiL- p,), this form will be more convenient for the non-linear 
yaw equation. Forithe case of zero yaw drag coefficient, we Bee, from 
Equations (22) and! (23), that 

i m 2a2 ,Kp= Km,;=- - 
pd3 &l 

(26) 

! 
r- 

.A..trajectoxy is'said to be flat when the component of the gravational 
force along the! trajectory does not change.. The yaw drag treatment may 
be extended to Freat non-flat trajectories if this is necessary; 



When the yaw-drag coefficient has a measurable effect, it does not 

usually affect the quality of this cubic fit for segments of trajectories 

. 

as long as 10,000 calibers. It has been found that in this case the, 

same configuration flying at diC:c'erent average yaws will provide good 
2a2 cubic fits but differe.:-i; value:: of '- . 

&1 
The problem is then to find 

the quadratic contribution of the yaw-drag term of Equation (23). 

Since all drag reductions contain a number of periods of the 

cosine term, the cubic fit of the time history effectively neglects 
this component of &2. With this in mind we look for the 'best' quadratic 

approximation to 11(p) over the length of observed trajectory, L. 

To do this we define an average squared yaw, 6 , so that the integral 

$5 I 2 

dp is a minimum.* is, therefore, the best 

. quadratic coefficient from the standpoint of least squares, Differentiating 
9 

the Integral with respect to & and setting the result equal to zero. 

s (;)p4 dp 

* Note that this average squared yaw is'different from the more.tradlQion- 

-571 ally used mean squaredyaw 6 =F (K12 + K22) dp. Although the average 

squared yaw has better theoretical justification, the numerical difference 
is usually not important., 

17 



P2 I$P) dP 

where I,(p) = + Kz2, ~dr dq 

0 0 

(27) 

2 e 
+ K20 s, 

- w -l+i&!.$ 
(ao1,j2 1 

The complete ,expaneion Tar 6" may be computed from the power series 
expansion of I1(p),. Since t& 

4 
e non-zero terma are usually sufficient, 

the following .expression for 8' 18 easily derivable. 

Returning to equation (%), 

1 (4 1 

In most cases a gogd approximation f'or 6% can be obtained by taking 
the firat term in Fhe expansion of Eq. (27p). 

The value of this rela+Jon is clearly shown in Figure 1 where 

53 ". Is plotted~verfius E2 for a body of revolution fired at yaw 
ang?%eup to 3o”. 

I 
iA further check on this technique lies in the 

good agreement of the wind tunnel value of KD 2 = 1,85 with the free 
I 

flight +&lue of l+. (See Table IV on Page;.) 



Free flight tests6 have shown that the situation for the yawing 
motion is quite similar to this yaw drag case. Although the non- 

line&ties do not measureably change the nature of the epicyclic 
motion‘which is predicted by the linear theory, they do affect the 
values of the epicyclic parameters. It is, therefore, necessary 

to obtain relations of the same type as Eq. (29). 

Since theYsimple case of the small amplitude yawing motion of a 
missile acted on by a cubic static moment will first be considered, 
Equation (20) can be donsiderably simplified. The small'amplitude 
assumption implies the approximations A = 1 and 4' = 0 while the 
restriction to a static moment eliminates the terms in H, Ji and T. 
The equation under consideration, therefore, becomes 

A" 3 ii&I - (MO + b$ s2)x = 0 

where 
MO 

The solution to the linearized form of Equation (30) for a l 

gyroscopically stable missile * is an epicycle without damping. 

X = K10 e + K20 e (31) 

* A missile is gyroscopically stable if v All statically stable 

missiles (Mo<O), for example, are gyroscopically stable. Statically 
unstable missiles,(s,>O) are gyroscopically stable when their 

gyroscopic stability factors, 
-2 

s=v , are greater than unity, 

% 

19 



where *;T=TiO +Tl p 

7 
r 

KiO’ IO’ and 8, are real constants, 

In Equation (31) the,KiO andTiO s depend on the initial conditions but 
the frequencies,Tl me functions fo the coefficients of the linearized 
equation and are independent of the initial conditions. The well known 
relations for the frequencies are 

(32) 

(33) 

It will be shown, hotiever, that the frequencies of the quasi-linear 
solution of Equation (30) do depend on the initial conditions. 

If the solutiouto Equation (30) is assumed to be of the same 
form as Equation (31), it can be substituted in Equation (30) to 

'provide the following equation 

50 e 
ifi1 

1 
- !(' i- ; $8; - MO - M2 (K102 + 2K20 *I 

I 1 

+K20 e 
i@e - 'fi;' ..I- 5 a; - MO - % (K202 + 2Klo2) 

I 
(34) 

L iq - !$I 
+K 10 K20 

2 

- % 
m2 - !q 

e 1 = 0. 
T 

I 
* The tilde superscripts are used to emphasize that the 

in the solution to,the linearized equation. 
i 9 ame= 

20 



Since we know that the epicycle is a good description of the actual 

motion, the third term in Equation (34) which contains mixed frequencies 

in neglected and the following two equations may be obtained. 

(34) 

where 6E1 
3 

= 50 + 2K202 

SE2 = K202 -I- X102 

Unfortunately Equations (35 - 36) sre both quadratic equations and two 

different values of each frequency,are possible, This difficulty, 
/ 

however, can be resolved. Since we are considering solutions close 

to the ablution of the linearized equation, the solution of Equation 
t (35) close to T$ 1 should be sele.cted'and similarly for Equation (36). 

This means that the larger root of Equatton (35) and the amaIler root 
of Equation (36) should be used. 

Equatlone'(35 - 36) show that &Ei, the effective value of the 

,squaxed yaw for the i - th frequency, is twice as sensitive to the 
,wlitude of,other frequency ae It is to its own amlplltude. The effect 
comes from the cosine term which was omitted from the yaw drag analysis, 
.For the yawing motion this periodic part of S2 can not be neglected. 

In order to obtain relations similar to Equations (32+.- 33), MO 
is first eliminated between Equations (35 - 36) and then 7 is eliminated 
between them 

21 



(3W 

= KlO" + K202 $K 2-&K202 f 1 10 

!( - v-g 

At first glance this derivation of our 'Pequivalenv' solution 

seems to be surrounded by an atmosphere of expediency and to be 
resting on empirical assumptions. Actually this is not true. As we 
shall now show our technique has a good theoretical background and 

I 
requires a minimy algebraic work in comparison with other methods. 
Finally it will be shown that the technique is not restricted to'non- 
linearitles proportional to e2 but can be easily extended to polynomial 
functions of S2. ' 

/ 
The derivation of Equations (35 -,36) may actually be considered 

,the.,first step of an iteration procedure. It is certainly reasonable 
to assume for small non-linesrities that the first stei of the iteration' 
has the same form as the lines? solution, The error term, 

Klo 
w2 - !q 

2K20ei(2P11- '2) +K~OK~O~~ 1 1 
introduces mixed frequencies which are a characteristic of a non-llneaf 

equation. The next step in the iteration wbuld be to assume a dolution 
of' the form 

SubstituUon of Equation (39) in Equation (30) wouldBxovide four 
complicated equations in terms of the four Kio's and tyo frequencies 

6, and our error term would then ,be,of the form 

where the Ai are fPfth order combinations of the K & This process 

may then be further iterated to yield a series expansion of the almost 
'perigdic solution of Equation (30). Fortunately as we shall see, the 
experimental results of this report show that only the first step of 
this process is nekded. 

’ 
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Another method of treating Equation (30) which may seem to be more 
elegant than the method of this report is that of Kryloff and Bogoliubpff.* 

It will be shown that this method provides the same result& as our direct 
substitution approach and requires more algebraiC work. Kryloff and 

Bogoliuboff move the non-linear terms ta the right-hand side of the 
equation and place the solution of the iinea;rized equation in these 
terms so that they are functions of the independent variable p0 The 
method of variation of parameters is then used to solve the resulting 
inhomogeneous linear equation. In order to solve the differential .- 
equations for the parametric functions, the terms arising from the 
inhomogeneous term.of the original equation are averaged over the two 
periods of the motion. 

As an illustration of this method we rewrite Equation (30) as 

‘A” - iih - MoX ='M2 62 X 

where f(p) = (Klo2 + fK202 )Klo e 
2.. 

+ Klo 2K 
4.. 

20 e t 

= % f(P) (40) 
rcl 

+- CK20 
2 t 2Klo2)K20 e '$2 

The pyameters of this s,olution are the 

'7 
1 

'm3les .io 8. Differentiating Equation (31) 
9' .v 

magnitudes KiO and the phase 

we have 
Y Y 

If the last two terms are set equal to zero, 

(& + i~~o~o)e + (Klo I- $OK2O)e = 0, (42) 

* In Reference 7 it is shown that this method is fundamentally the same 
as that of Van der Pal. They differ in the fact that Kryloff and 
Bogoliuboff express the linear solution in polar co-ordinate form 
and Van der :Rol expresses it in Cartesian form. 



then Equation (41) ma be differentiated again to yield 
d 

A" = -y.'Klo'e ' l -7; 2 K20 e i% + 3; (KiO + $iO KlO)e 

T( i2 7' 
+i 2 K;O'+ iy;O K20)e . 

Substituting Equations (31, 41, 43) for h, h', A," in Equation (40) 
I 

and solving for KlO + 

Klo * ilqo KlO = 

i7.0 KIO by use of Equation (42), 

M2 f(p) e - 
% 

q - 7;) ' 
(44) 

If the right side of Equation (44) i s now averaged over a period of 

#2 - 161, and the~result divided into real end imaginary parts, 

K’ ~= 0 
10’ r 

By symmetry,' I 

(45) * 

(46) 

(46) 

(47) 

Equations (45 - 47) show that the first approximation to the 
solution of Equation (30) is an epicycle with no damping but with 
frequencies which differ from those of the solution of the linearized 
equation. The cdrrections to the frequencies are the i. s given by 
Equations (46) ar/d.(48). 
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(49) 

In.order to compare these results with Equations (37 - 38), Equation 

(48) and (49) are first added and then multiplied. After making 

use of Equations (32) and (33), the following relations may be 

obtwed. 

But if second &der quantities are ne’glected, Equations (5&- 51) are I 
the same as Equations (37 - 38). Thus for twice the work we get the 

mme result. 

Ae a further basis for our quasi-linearization technique a special 
form of Equation (30) will be considered for ‘which an exact solution 
is known. This case is that of a statically atable non-spinning missile 

In planar yawing motion. If L is replaced by 6 e IB where 8 Is the 

orS&ation angle of the plane ofyaw, Equation (30) assumes the form 

6” - (MO + I$ S*)s = 0 (52) 

where,Mo<O. For glanar yawing motion 6 must go through zero ana, hence, 
the ttjo amplitudes must be equal (Klo = KPO = K). Flnally according 
Equation (37) the frequencies for a non-spinning missile differ only 
sign, (j( = -$ = @), The q uasi-linear solution of Equation (52) is 

a special form of an epicycle, 

ipll 
S = K (e. + e 

if& 
)e -ie 

to 

in 

= srn cos ($'P +,flo), 
(53) 
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for which Equation (38) reduces to 

e2 = - MO : ;-8O2 M2 (54) 
I 

where 6m 1 2K. (m&$dmum value 'of s) 

$ = jif10 - 0 I= 8 - $d20" " 

The exact +ion of Equation (52) is an elliptic function with 
period determined'+ complete elliptic integral of the first type. 'Thus 

by use of'a little ~algebra and a table of complete elliptic integrals 
itis possible to compare the periods predicted by Equation (5k)with 
the period of the exact solution of Equation (52). In doing this two cases, 
must be cokered: 

1. A moment which'grows faster than a ,linear moment ($40) 

2 ; “,,A moment' which grows slower than 

therefore, actually changes 'sign for' !z6 
8 linear moment (M2>0) and, 

-57 = la 1 > " T 
Although a quasi-linear approximation may be reasonably good for 

; 
reasonably X&ge values of 

3-l 
' " _ when h$ is negative, it certainly', Y 

62 
M;! I ,'cannot be good for values of / *' / Md 1 

near unity when M2 is posltlve. 

"With this in mind we may now state the surprising results of th$s 
comparison with the exact theory. For negative M2's, Equation (82) 
predicts the period with less than l$ error whenever the non-line 

I % 
.02 

moment contribution, is less than five times,the linear moment ( - 
I I> MO 

<' 5j. 
For positive M2"s the error will be less than a percent when the non- 
linear moment contrkbution is less than one-half the linear moment I 

( Q ,s' ~ 

Mo k 
$ ). Ip tlfi s case the error, however, rises quite rapidly 

for larger angles. ! As a result of these facts it is reasonable to make 
use of Equations (3k - 38) with considerable optimism. , 



Turning now to the question of more general non-linearities an 

examination of the algebra used in Equations (35 - 38) indicates that 

any polynomial function of 8 could be used. In order to obtain 

the effective values of higher powers of E2 we look for those terms -. 
% 

in 6 2n which upon multiplication by h yield terms in KIC e or 

@2 
K20e ’ Clearly the only terms which have this property are 

constants, e i(@2 - @,I, and ei(@, - f&i). In the binomial expansion 

of 6 2n the only term in which these exponentials appear are various, 

multiples of the cosine, i.e. r CKlOK20 e 
Ml - &I i(#* - p$ 

+e 
! 

l 

Although the constant terms are unaltered in all three forms of effective 

Yaws I [B2qel, rye2 and :E'"3,, the cosine term makes different contri- 

butione to these forms. For 
' 2 

el its contribution J.s CK202, for 6*' 
Cl e2 

It la CKIO ) C (K1o 't * $' '*I. 
$1 - $2 

As an example of this algorithm we calculate the three effective 

forms of S4. 

Fra Equation 

s4 

(*5), a$ - !q M, - $1) 2 = i-e > 1 (55) 

where a = K 
2 2 

10 + K20 

The exponential form of the cosine allows an easy selection of the 
constant and cosine terms of the expansion. These particular terms of 

the expansion will be identefied by brackets on e4 

II .B4 2 =a + 2b2 + 2a (56) 

$1 - 4) Qej, - 8,) 
where = b(e 

In order to obtain .[&r,:,'bqe2, or bq,, K202, Kli, or " 

Klo2 Id; - K202 #; 
respectively should be inserted In the empty brackets of 

Equation (56). 
27 



el 
=,a2 + 2b2 + 2a K202 [ 1 (57) 

[I s4 e2 = 

[I s4 =’ e 

a2 

a2 

2b2 + 2a 

2b2 + 2a 

(58) 

(591 

In Table I values of 6 2n are given for all values of n between 
one and eight. 

4,. GEOMEXPRIC ;NON-LINEARITIES OF LARGE YAWING MOTION 

The basic quanti,ties measured in free flight, are the co-ordinates 
bf mis8ile's center of ma86 and the direction cosines of its axis of 
symmetry. Since the usual formulas5 relating the direction cosines 
and, the motion of the c.m. to the complex yaw X were derived for small 
yaws, the exact relations have to be derived for this report. In this 
-derivation we will find it convenient to keep the 2-axis in the horizontal 

plane (fixed-plane co-ordinates), Unfortunately these co-ordinates are 
not the same aa the non-rolling co-ordinates (0 = 0) and it Is, therefore, 
neceaaary to calculate 3 for these co-ordinqtes. Surprisingly enough in 
Referenc'a 8 it is sho)n that not only-is 9 finite but it has a non--z&o 

average value. In o& development the cumbersome Eulerian angles of that 
report will not be used md the desired results will be 'obtained in a 
somewhat simpler fashion. 

Co-ordinates in the free flight range system will be identified by 

(x,, 9 x3) and in,the fixed-plane system by (y,, y2? y,). The range 
system has a l-axis ptinted downrange along the intersection of 
horizontal plane and kertical plane containing the gun. 'The 24xis lies 
in the horizontal plaie pointing to the Left and\the 3-axis up. The 
fixed-plane co-ordinates have the l-axis along the missiles-s axis, the 
2-axis in the horizontal plane pointing to the right, and the j-axis 
d0WI.l. Finally the no: -s inrln co-ardinates, which are our fundamental p 1 g 
co-ordinates in the theory, have the l-axis along the missile's axis, 
the 2-axis,initially'painting to the right in the horizontal plane 
but moving so that 3 is zero and the Paxis fixed by the right-hmd 

rule, 
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In order to calculate the complex yaw it is necessary to know the 
components in the range system of the unit vectors, --> 4 e 2 1, e2) 3, along the 
fixed-plane axes. Since the fixe.d plane,l-axis lies along the missile~s 
axis of symmetry, components of the unit vector 2 are (n,, n2, n3) where 
the ni are direction cosines of the missilets axis with respect to the 

range system. The restriction of the fixed plane 2-axis to the horizontal 
plane is equivalent to the requirement that the third component of 22 

. be zero. This together with the requirement that it be perpendicular 
to the l-axis and pointing to the right completely determine the 
components of the unit vector along the 2-axis. 

According to the right hand rule, the,third unit vector is equal to the 
cross product of the first two. 

3 3 =-e) 1 x g2 = bl, n2.’ n3) x ( 
J* $/+ ? 

With this information ,the matrix equation for changing from the 'range 
coordinates to fixed-ilane co-ordinates can now be written: 

"2 

1 

J* 2 +n 2 



If the vector (21, x2, x3) is inserted on the right side of Equation (65), 

the left side would yield the components of the velocity vector in the 
Pixed-plane co-ordinates. These co-ordinates will be denoted by the 

pymbols (~1, 4, h,) and the 
reservedfor the non-rolling 

symbols without the c+rcumflex will be 
co-ordinate system. 

(64) 

G. = 
3 

n>3$ + n2n3?2 - (n12 + n22)P3 

+Ci 
(65) 

Dividing by the magnitude of the velocity vector, u = 21 t 

and simplifying, we can obtain the following expresslons 

*for the components of the complex yaw in the fwed-plane system: 

A 
u3 ;3=u= 

dx2 &3 
filn3 + np3(& - b12 f n22)(& 

(671 

For the case of a flat trajectory, the derivatives are the same 

order of magnitude as n2 and n 3 or smaller and, if we make use of the 
) , .  f& *K&i n12 = 1 - nz2 - nj2, we can-obtain the first order appsoxmtion 

of the yaw components 
dx2 "x2 = n2 - - 
% 

A &3 
x3 = n3 - - dxl 

w 
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Turning now to the problem of computing the axial angular, velocity 

of our fixed-plane co-ordinates, we first must state the definition of 

-the angular velocity vector in terms of unit vectors along these CO- 

(69) 

where ( >I denotes d . 
dp 

(70) 

(71) 

Substituting in Fquation (70) the co-ordinates of the vectors 

yz and* from Equatibns (61-62) we have 3 

Similarly, 

z = a2 +,ii3 

% 

=vr, 
2 

I 
/{F-q -n 3 (72) 

n2n3 

1 
'n3 ( nln2t - n2nl ‘1 

$II z ,1in32 
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r  

(77) 

A 
* . v=- $3 ( 

J 
n3 > - ‘n 2 (74) 

l 3 

'If the angle between the missile's axis and a vertical axis is 

denoted by q, then n7 = cos Q and Equation (74) reduces to 

n A y=- p3 cot If (75) 

Since 92 is the angular velocity of the missilers axis about the 2-axis 

which is fixed in the horizontal plane, its integral should be related 

to q, Integrating c2 as given by Equation (73), we. see that this is true. 

P 

s 
-$, dp = arccos n,(p) - arccos n3(a) (76) 

0 

Although Equations (75)'and (77) are very useful for the numerical 
integration of the complete equations of motion, ye will find Equation 
(72) to be much morement for the purposes of this report. 

If the flat trajectory approximation xl = pd is used, a first order 
approximation of c may now be obtained from Equations (67), (68), and 

(72). 
A v = nj”; = ‘I3 x; X2” 

+$ (1; +=$ 

where T = -d X2 
x2” A 

-kdX3+ 
x; x2” 

2 ’ 

A good approximation to the 
A 
x2 = K10 cos 3 l f 

A A 
x3 = K10 sin @l -t 

(78) 

yaw components is an epicycle. 

Kpo cos 3, (79) 
A 

Kpo sin f12 (80) 
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where K 10 are constants and 

$, are linear functions* of p, 

From Equation (81) it,can be seen that $ has a non-zero average value 

of - L 2' '2p 
2 Klo ;a 1 + K20 2 “I . (Fortunately, for small yaws, this can 

be neglected.) 

Turning te the small'trajectory term T we consider only the effect of 
gravity and lift force and obtain the following relations for constant 
velocity uO from Reference 5. 

KIO -y 
$ 

sin 3, + t K2o sin 

1 $ 2 

= f+, - ,$ p - JL p cos gl f p COB 4 
1 2 1 

where Qi are small constants*, and 
g is the acceleration due to gravity 

7 

A little algebraic manfpulation results in the relation that 

-E 
The circumflex on t& ~ 3 i 1s is to indicate that these angles are 
measured in the fixeb plane system and not in the non-rolling 
system of Section 2.1 

(82) 

(83) 

** 
This is due to the &sumption of a flat trajectory. 
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T =-(;) + 
lho 

2 

c 1 
+ fluctuating terms (84) 

Since for most missiles JL 1) -10 -6 

% 
, T is effectively the same order 

7 

as K 4 
10 and we need only consider the fourth order terms which are 

independent of the tragectory to obtain a complete fourth order 
approximation to the non-fluctuating or "D, C. componene'of y. This 

expression is calculated in Appendix B,* If-we add T to this and define 

With these results we can now calculate either the exact position 
or the average posltlon of 2 and 3-axes of the non-rolling co-ordinates. 

Since our fixed plane co-ordinates are turning at an angular velocity of 
0 with respect to the non-rolling co-ordinates, we have that 

(86) 

As it sha.11 be shown later, c, in Equation (86) may be replaced by $ 11 for 

the data reduction of large yaw firings. 

The effect of large yawing motions on the results of Section 2 manifesta it- 
self in two ways. First the distinction between the nbn-spinning co-ordinates 

and the fixed-plane co-ordinates becomes important. According to Equations 

(85-86) these co-ordinate systems rotate with respect to each other with a non-zeroY 

* In Appendix B the frequency for pure precession is compared with the 
approximate relation based on this expression for 0 . 

13 
As can be seen 

in Fig. 15, the agreement is good for 6 = sin 45O. 
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averageE] . If 3; h' and 62 denote the epicycle frequencies for the 

range fixed-plane co-ordinates, it can be seen from Equations (85) and 
(86) and the assumption that the motion in fixed plane coordinates is 

also epicyclic that* i 

(87) 

The second effect which is the appearance of the cosine of the yaw angle, 
x&y be seen in the equation,of undamped yawing motion in the non-rolling 
system. This may be obtained from Equation (20) as 

where M = a k2 -' JM A MO -I- 4 S2 

MO = k2 -2 
JMo 

- $ MO = k2 -2 (Jlg2 - ; :JMo) 

t 
Equation (89) differs from Equation (30) by the 4' X' term and the presence 
of the cosine term in M. In order to obtain the,correct form of Equations 
(37-38) we must derive; a good approximation to i . 

= - (;) ($2f 
(1 ; S2) (90) 

-FOX- rapidI-y spinning,Fodels at 
large correction on '42. If $1 

igh yaw Equation (88),am impose a 
i = @and Kl> .23, @2 becoms negative 

&@nd.the product of the rates in the non-rolling system would be negative. 
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A - (;) (b2)l 

Inserting Equation (25) in Equation(90) we have 

Substituting Equation (91) 
(89) in the same way as. we 

in Equation (89), and operating on Equation 
treated Equation (30), the f#owing twoi@ 

3 
equations may be obtained from the coefficients of K 10 e A and K20e e 
respectively 

jb;'- $i( + MO + 4 81 + K2$.(&,- &)($) 7 0 (92) 

Eliminating first MO and then 7 between Equations (92) and (93), 

Thus the .geometric non-linearity of Equation (89) introduce correction 
terms to the left sides of Equations (37 - 38) of the previous section 

* 1 and replaces M2,by M2 = M2 Y z MO 1~ those equations. If the frequencies 
In Equations (94 - 95) are replaced by their fixed plane value6 from 
Equation .(87 - 88), and fourth powers of KiO Is are neglected, Equations 
(94 - 95) may be written in the following useful form. 
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An examination of Equation (97) shows that the effect of a large 

percentage change in the frequencies implied by Equations (87 - 88) is 
almost completely Gancelled when the terms in the cosine of yaw are 

properly handled. A$ a check on the derivation of Equations (96 - 97) they 

are derived in Appendix C directly from the yaw equation expressed 
In the fixed-plane system. This derivation shows that the assumption 
implied in Equations,(87 - 88) is equivalent to the basic assumption 
underlying this whole report. 

5. EXPERIMENTAL RFSULTS 

In Section 3, a very simple example of non-linear yawing motion with 
two degrees of freedom is considered in great detail. The very same 
quasi-linear assumpt+on may be applied to a much more complicated system. 
Inappendices D and R the yawing and swerving motion of a missile for 
which all aerodynamio coefficients are quadratic functions of 6 IS 
considered. Equations relating the parameters of the epicycle 
approximation (frequencies and damping exponents) to the coefficients 
of ,the parent non-linear equation and the amplFtudea.of both modes are 
derived. Since these relations are essentially approximations, their 
value must be determined by either numerical or experimental checks. 

A good check on ~these approximations can be obtained by means of 
the actual free flight motion of a missile acted on by non-linear forces 
and moments. For thi,s reason various results of firing tests on RRLls ' 
spark ranges 9 were ex&nined for possible verification of the quasi-linear 
hypothesis. The results of this investigation were quite encouraging. 

The effect of a bubic static moment on three different programs was 
first considered. 
mortarslO), 

ThFse programs were a finned missile p'rogram (81mm 

a body ofI revolution program (Army-Navy Spinner Rocket 
program6), and a large yaw body of revolution program fired by E, 
Roeckerlj) ~ 

In the finned mibsile program a free flight range value of s was 
computed from the pro!uct of the frequencies. & According to Equation 
(38a) and the definitions of M 

i $ i 

(98) 

I 
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Thus the range value of KM' as obtained from an epicycle fit of 

individual rounds, should be a linear function of the corresponding 

effective squared yaws, 
plotted against Ee2 

In Figure 2 the range values of G are 

and different lines for each configuration tested 

are drawn through corresponding points.* The linearity exhibited by 
these experimental points constitutes the first check of the theory. 

It should be emphasized that in all cases, epicycles with damping 
were fitted to the data and although the exponentially varying Kits ' 

actually should have appeared in the calculation of be2 they were 

approximated by their midrange values Ki0f6. The approximation is 

implied by our basic quasi-linear assumption, 

The Army-Navy Spinner Rocket program consisted of three model 
lengths each with three different center of mass positions and fired 
at three Mach numbers& A maximum of twenty-seven values of $ 

E2 
wa6 

therefore possible. Since for each case at least four points with a 

reasonable spr?& in ge2 are-necessary for a good determination of 
%I 

2, 

it was actually possible to obtain-only sixteen values from a careful 
analysis of the 126 record rounds of the program. 

These values with their standard errors are listed in Table II. 

A sample plot of the experimental points for the g-caliber model at 
Mach number of 1.8 is given in Figure 3. 

For some of the Mach numbers and configurations, wind tunnel data 
taken by R. Krieger were available. The data for the overturning 

moment were fitted by cubits and t& cubic coefficients ( 2) are 

listed in Table II. At all seven points of comparison the agreement 

is good. 

* 
Since these finned missiles were not spinning, fii = - fii and the 
effective squared yaw assumes the concise form- ; (Klo2 + Kzo2- > 

In Reference 10, the K, ts were erroneously plotted against 
"range 

.z 2 K102 + K2o* and, hence, the slopes obtained 

3 &ctuaIly z KME2. 

in that report are 



TABLE II 

FOR THE ARMY-NAVY SPINNER ROCKET 

Mach Forward Middle 
Number Center of' Mass Center of Mass 

Range I Wind Range Wind 
Tunnel Tunnel 

1.3 
1.8 

1.3 
1.8 
2.5 

Five Caliber Long Models 

;- 2 - 3+1 0 
'-14 - 7 

Seven Caliber Long Models 

-2l+l' - 
-1271 '- 

.5 +.l 
-11 - 

- 28 i 1 
3 

-26 - 11 

Nine Caliber Long Models 

1.3 -35+1' 
1.8 - 3054 

.l + .Ol * 
- 16 + 1 

2.5 -,‘SO.T 
L' 3.7 7 .3 

2 - 1 T .6 

Rear 
Center of Mass 

Range Wind 
Tunnel 

1 .+ 2 3 
371 0 

7+2 
0+3 : 

The center of mass for these RCM models is' .2 cal. rear of its 
usual location. ~ 
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Since models with three different center of mass locations were 

fired, a second check is possible. If the normal force is expanded 

as a cubic function of 6, the usual center of mass relations provid.e 

that 

KMoh) = Q 
0 

+ 9 5 
0 

(99) 

000) 

where 3-J ) q are the moment coefficients for a center of mass located q 
i 

calibers rear of the center of mass for the 

This means that the Is for different center of mass 

locations are linear functions of location. It was possible to measure 

three values of K 
Is2' 

for only one configuration and one Mach number. 

In Figure 4 both $ and 5 
62 

for this case, are plotted against center 
0 

of mass location. The fact that the cubic coefficients as well as the 

linear coefficients fall on a straight line is another point in favour 

of the theory. The slopes of these lines are s 62 and so respectively. 

For six other cases it was possible to compute s 
62 

from two values 

Of %I,2 
and all seven values together with the corresponding linear 

values (s ) are tabulated in Table III. Once again Krlegerls wind 
0 

tunnel data were analysed and it was found that at all points of 
comparison the wind tunnel results were in good agreement with center 
of mass values. 

In Appendix D, it is shown that the lift force and Nagnus force 

coefficients may be directly measured from the swerving motion when it is 
large enough. According to this appendix, most of the swerve is associ- 

ated with the lower frequency and, hence, the range values of KL and s 

for each round should be plotted against the corresponding value of 
A sample plot of this process is given in Figure 5. 
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Mach 
Number 

Center Swerve Wind Center Swerve Wind 
of Mass Tunnel of Mass Tunnel 

Five Caliber Models 

1.3 .98 / l 99 .92 7 5.2 -I- .2 5 
1.8 1.13 /1.13 1.10 -- 10- -t-2 ,7 

1.3 
1.8 
2.5 

Seven Caliber Models 

1.02 ~ .g8 -c 20 10 +l -- 
1.13 '1.13 1.08 12 gT4 10 
1.21 :1.20 1.21 18 27 24 18 

Nine Caliber Models 

1.3 
1.8 
2:‘5 

1.06 1.07 
:iY23 

17 17 +1 
1.14 14.2 
a.31 34 

2 .4 15 72 
1.20 30 12 

, 

TABLE III 
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. 

In order to calculate 
%52 from KLg2' 

it is necessary to expand 

Equation (17) in powers of 62 and compare coefficients 

$52 = %,2 - i KLo + E5,2 002) 

Usingjthese relations it was possible to calculate eight values of 
both so and KN62 from the swerving motion and these are given in Table 

III. With ,the exception of two values of KR 
e2 

for the T-caliber models 

-the agreement is remarkable. The reason for these two discrepancies 
is at present unknown. 

Although the lateral displacement due to Magnus force is about one 
tenth that due to lift, it was possible to make two meastiements of 

% 2' The experimental points for these two cases are given in Figure 61 

Thg excellent internal agreement of these quite delicate measurements 
is extremely gratifying. 

Finally in Roecker's large yaw program it was possible to check the 
treatment for the geometric non-linearities. In Figure 7 G , as 

range 
calculated from Equation (97), is plotted against Ee2. Here we see 
that the data is essentially bilinear. Each line corresponds to a 
cubic segment in the moment plane. If the parameters of each cubic 
are calculated from the slope and intercept of its corresponding line 
in t&e K& - 6 2 plane, they can be pieced together to form a smooth 
moment plot. e(Eigure 8). (An examination of the spark shadowgraphs 
revealed the fact that flow separation OCC~LU-s at about 21' and this 
explains the sudden change in the moment curve at this point.) In 

Figure 9, KL is plotted versus Se22 and the corresponding lift force 
plot is given in Figure 10. 

Since wind tunnel measurements for this configuration'had been 
made by W. Buford, a comparison was possible. The data was divided 



into angles of yaw less than 21' and greater than 21' and pairs of cubits 

fitted. The resulting coefficients are compared in Table IV. The 

agreement is excellent. 

As a result of this rather spectacular success with the non-linear 
stat:ic moment, the more difficult problem of Magnus and damping moments 
was then considered. In Appendix E it is shown that a quadratic dependence: 

Of SC andK h - k on 6 so affects the damping.of the epicycle that the 
usual linear formulas for KII - k and KT are actually the following 
combinations of coefficients; 

where 

C82-= KTr,2 - $"'%,. 

Range values of KH - k and KT for the Army-Navy Spinner Rocket 
program were fitted by least squares to Equations (103404) and values 
of KTo, KKo - kOI Gg2 and c82 were computed, In all cases the 

coefficients of 
GB2 

were small and this quantity was poorly determined. 

% 
* 2 was therefore omitted from Equations (103-104) and they were fitted 

separately to range values of K 
i3-kand+ I 

Bince this meas,urement depends on the damping exponents and hence 
is quite delicate, it 'was possible to obtain only eight values of KT . s* 
fxcun 3 and four ~from (KK - .E;MA) . These axe listed in Table V 

range range 



TABLE IV 

Large Yaw Results for M = 2.3 

Wind Tunnel 1.85 .825 

Range 1.82 .829 

Wind Tunnel .729* 
Range l 719* 

$82 %o 
- 1.1 1.01 

- 1.0 0.99 

0.0 1.45* 
0.1 1.43* 

x2 
4.0 

3 

before separation 

'3.6 6 5 sin 21° 

0.0 
3 

after separation 

0.4 8 2 sin 21' 

* Evaluated at separation 
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Mach !Q)2 
NO. -- 

C.M. 

1.8 22 -- 4.8 

2.5 19 

1.8 1g 

$82 ~ "F,2 

Swerve FCM MCM 

Seven Caliber Lana Models 

cc 5.1 

% -1625 -59 
range 

(KH - K& - 20 2 14 -- 
range 

KT - 34 _+ 1.6 -- 
range 

(s-K& -25214 -- 
range 

KT -3625 -- 
range 

(KH - I$& - 28 2 4 -- 
range 

Nine Caliber Long Models '. 

.-x- .F -. 6.3 5 
-2g+2 -- 

range - 

(KH - K& - 26 I- 3 -- 
range 

* ss2 
for Mach number 1.3 was given in Figure 6 as 8 + 1. 

I 

RCM 

0 i-1 

-1 

-6 23 

-- 

NOL Wind Tunnel meastiements were &de by Luchuk and SparksAL for 7 
caliber model at M ,be$veen 1.6 and 2.5. According..to these results 
K&B2 " 11, CPF,2 L 5.4. 

I 



and the agreement between pairs of is within the standard errors.*-:'- 

In Figures 11 - 12, a pair of plots of experimental points for KT 
range 

and (KB - k) range are given* 

In all four cases values of 
x2 

for two center of mass locati on6 

were obtained and 
' s and cpF,2 

' s were camputed from these. At 

the Naval Ordnance Laboratory, Luchuk and Sparks 11 have made wind tunnel 
measurements of these quantities .and their results, as given at the bottom 
of Table V, are in reasonable agreement with flight tests. Finally it 
should be noted in the Table that at one point of comparison of center of 
,mass and swerve values of ( the seven caliber models at M = 1.3) the 

agreement is good. 

, As a last example of this quasi-linear technique we will consider a 

body of revolution which displayed an extremely non-linear Magnus mom.ent. 
The range values,of 
plotted versus Ee2 

KT for this model were obtained by E. Roecker and are 
in Figure 13.. Although these data are fitted by two 

lines, only the first line is well determined. In fact if the fourth point 
from the right were neglected, the large yaw values would be reasonahly 
well represented by the dashed horizontal line. 

In Figure 14 the corresponding cubic segments are plotted and compared 
'with a BRL wind tunnel curve obtained by A. Platou. The good qualitative , 
agreement for this strongly non-linear moment is remarkable. 

Since the quasi-linear relations have been so well verified by 
experiment, they should be quite valuable in the important problem of 
prediction of missile motion from a knowledge of the force and moment 

the 

curves. .>This application of the quasi-linear technique is described in 
more detail in the next section. 

F * Thus an observed dependence of (KR- k) on magnitude of yaw is 
range 

not necessarily due to non-linear damping moments but may be due to a 
non-linear Magnus moment. 
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67 PRELXCTION OF NON-~LINEXR YMING MOTION 

Although the application of the theory of this report to range data 
analysis enhances markedly the value of spark ranges, an even more important' 

application is the prediction of the yawing motion of a missile acted on 
by non-linear forces and moments- The experimental results of this repo:rt 

indicate that this inTerse problem should be successfully handled by the 
s&me theory. In this section we will outline the procedure for this 
prediction problem. 

First the sizes #of the two arms must be obtained from the initial 
conditions 

. 156, % 
l .  

xO 

= K, e + K2 e 005) 

% % 
hO ' = (- a1 + i()K1 e + (- a2 + i&,)K, e 006) 

In order to take care of the effect of damping the trajectory should 
be divided into inte&ls over which neither aznplltude changes by more 
than 50$, The length of the first interval may be estimated from the 
linear damping. If the calculated quasi-linear damping is much larger, 
the interval may then be shortened and the process iterated, The lengths 

of the other intervals should be determined in a similar manner. Values 

of P$, frequencies in non-rolling co-ordinates, can now be computed from 
Equations (92 - 93) which are simple quadratic equations.* (9; may be 

computed &om Equations (87 - 88).) Then values! of IZ~ may be computed 
from Equations (E4 - #E5) which are even simpl-er lFnear equations." 

* For ease of calculgtion the linearized values of 0's and a! s may be first 
placed in the coupling terms arising from the non- 1 inear g&ometry and an 
iteration performed if needed. 
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If a more complex polynomial dependence of KM and KT on 6* is 
required, this may be handled in the following way. 

Let 

n 

KM = 'M,2k 62k 

k-0 

. 

n 

% -: 
c 

82k KTg2k ' 
k=O 

(107) 

(108) 

Then Equations (92 - 93) and (E4 - E5) take on the following slightly 
* 

more complex form: n 

&’ - 

ap; - G> 

k=O 
n 

Y& + 
): 

@i 
& tgzkje2 + Klo2(& - @;)(F) + ‘3,(!1. - j.:2) = 0 (110) 

k-0 

1 

f: 
T;k("2k)el - + )$; -I- K202$j 

k=O 

. 

- JLE2(@; - &)Kpo2 + P&Klo2 + a2Kzo2) (111) 

)K202 = 0 

n 

- Ho@; +; 
>: 

T;k(82k je2 - Hg2 (Klo2 + K202 ,a; + K10 
k=O 

C 

* Eqs*(9?-93) are 3150 slightly modified by the presen.:c of damp-in&. 
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where 
54 B21r 

&2k 
k=O f' 

n 

>: 
.gk B2k = E$ 

n. 

n 

>I k=O 

2k - kl-2 
6. 

k=O 

and those terms appearing in the right hand summations which have powers 
of 6 greater than 2n are neglected.* 

It should be remembered that these equations are derived on the 
assumption of a flat trajectory. ,The complications introduced by gravity 
will be considered 'ina later report. In any event for a large class of 

,problems this simple procedure should allow reasonably good pred!iction of 

the motion of missiles acted by non-linear forces, 

1. A convenient expansion of the aerodynamic force system for large 
yaw has been obtained and the necessary geometric relations 'for 
these large yaws' derived', 

2.' Relations for parameters of a linear equation which is equivalent 
to the ac't.ualr non-linear equation have been derived. 

3. These relations have been tested by actual firing tests and 
excellent internal consistency has been qbserved. Where wind 
tunnel measurements were available, good agreement has been 
dbtained. I 

The effect of the 'terms in JL which .are higher order than B2 on the 

,-JL'h term in Equation (20) has been neglected. 


